0=x^2+20-55

Simple and best practice solution for 0=x^2+20-55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=x^2+20-55 equation:



0=x^2+20-55
We move all terms to the left:
0-(x^2+20-55)=0
We add all the numbers together, and all the variables
-(x^2+20-55)=0
We get rid of parentheses
-x^2-20+55=0
We add all the numbers together, and all the variables
-1x^2+35=0
a = -1; b = 0; c = +35;
Δ = b2-4ac
Δ = 02-4·(-1)·35
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*-1}=\frac{0-2\sqrt{35}}{-2} =-\frac{2\sqrt{35}}{-2} =-\frac{\sqrt{35}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*-1}=\frac{0+2\sqrt{35}}{-2} =\frac{2\sqrt{35}}{-2} =\frac{\sqrt{35}}{-1} $

See similar equations:

| -3(x-6)+7=-(x+3) | | 40=6(b-3)+5(b-6) | | 1+28x=59x+1 | | 12x-7=4x+3 | | 3=1.5x+27 | | -51=-2(5-x)+3(x-2) | | -7(4x-6)+8=-28+50 | | 2x^{2}-9=41 | | 6(64+z=36 | | -3+3(x+8)=2(1+6x)-8 | | 22=1/2(x+5) | | 5x+8–2=-10x–x | | x2−6x+32=0 | | 8(x-7)+2=-46 | | 14w-13w=10 | | -7(4x-6)+8=28x+50 | | 3b(b=12)-9= | | 56=8(7+8x)+7x | | 1/2(x+5)=22 | | -6x-4x=5(-4x-2)-8(x+1) | | 10x+7=15x-13 | | 6(-x-3)=-36 | | -6x+-6x=-12x | | -12=-3x-4-x | | a+8=44 | | -6x+-6x=0 | | (6x+8)²=26²-12² | | 7+3(7+x)=-2(x+1)+7x | | 6x+2x^2=-2x^2-10 | | 3x-9=3(x+1 | | 2+6(3+x)=2x+6(x+7) | | -8=-5x-3x |

Equations solver categories